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MOTIVATION Tracking the three-dimensional (3D) poses of multiple non-human primates (NHPs) is essen-
tial for quantifying their behaviors. However, most existing methods are limited to offline processing and
lack the capability for closed-loop experiments. The ability to deliver sensory or optogenetic stimuli based
on events detected from the 3D positions and poses of NHPs is a powerful tool for studying their behaviors.
To address this limitation, we developed MarmoPose, areal-time 3D pose tracking system for multiple mar-
mosets. MarmoPose is capable of accurately tracking the 3D poses of multiple freely moving marmosets in
their home cage with minimal hardware requirements and supports real-time closed-loop experimental
control.

SUMMARY

The ability to track the positions and poses of multiple animals in three-dimensional (3D) space in real time is
highly desired by non-human primate (NHP) researchers in behavioral and systems neuroscience. This capa-
bility enables the analysis of social behaviors involving multiple NHPs and supports closed-loop experi-
ments. Although several animal 3D pose tracking systems have been developed, most are difficult to deploy
in new environments and lack real-time analysis capabilities. To address these limitations, we developed
MarmoPose, a deep-learning-based, real-time 3D pose tracking system for multiple common marmosets,
an increasingly critical NHP model in neuroscience research. This system can accurately track the 3D poses
of multiple marmosets freely moving in their home cage with minimal hardware requirements. By employing a
marmoset skeleton model, MarmoPose can further optimize 3D poses and estimate invisible body locations.
Additionally, MarmoPose achieves high inference speeds and enables real-time closed-loop experimental
control based on events detected from 3D poses.

INTRODUCTION

The common marmoset (Callithrix jacchus) has emerged in
recent years as a promising non-human primate model in neuro-
science research, offering unique advantages over other animal
models. Compared to rodents, marmosets have more complex
brain architecture and exhibit closer cognitive ability to humans.
Unlike larger primates like macaques, marmosets are easier to
breed in captivity and have a shorter developmental stage and
faster reproductive cycle."> Marmosets have been widely used
in various fields of scientific research, including vocal and audi-
tory studies,®® visual neuroscience,” "' and transgenic studies
for disease modeling.'?'®

Marmosets are particularly suitable for a wide range of
behavioral experiments due to their small body size and social
behaviors.'” However, most behavioral experiments on mar-
mosets have been conducted based on manual recordings
or with movement constraints.'®° Therefore, the ability to
automatically capture and quantify behaviors of marmosets
in natural environments and social scenarios is highly desired
by the marmoset research community. Such a system could
be integrated with other experimental methodologies to
advance marmoset research. For instance, using quantified
behaviors to identify the differences in behavioral phenotypes
between normal and genetically modified marmosets could
shed light on the relationships between genes and behaviors.
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In addition, synchronizing behavioral quantification with neural
activity recording technologies has the potential to reveal the
neural mechanisms underlying behaviors.

In recent years, there has been a rapid development of
automated pose tracking systems for animal behavioral
studies. DeeplLabCut offers multi-animal two-dimensional
(2D) pose estimation capabilities®’*** and can be extended
to provide low-latency 3D pose estimation for a single ani-
mal.?**®> SLEAP provides versatile support for multi-animal
2D pose tracking across a variety of network architec-
tures.?%2” DANNCE enables direct 3D pose estimation for sin-
gle rodent and can be transferred to other species.”®
MAMMAL provides the capability to capture 3D surface mo-
tions of pigs and dogs.?° Additionally, species-specific sys-
tems have been developed, such as OpenMonkeyStudio for
macaques,>° DeepFly3D for Drosophila,®’ and FreiPose for
rats.®

DeepBhvTracking,®® MarmoDector,** and FulMAI®*® are off-
line tracking systems specifically designed for marmosets.
However, the functions of these systems are confined to
tracking the positional trajectories of marmosets in 2D or 3D
spaces, lacking crucial pose information for behavioral ana-
lyses. While DeepLabCut offers 2D pose tracking capability
for marmosets, and DANNCE has the potential to be adapted
for estimating the 3D poses of single marmoset, a significant
amount of new training data is required for new experimental
setups, such as adding more marmosets with new identities,
which considerably limits their applications in marmoset behav-
ioral experiments.

Due to the highly social nature and rapid movements of mar-
mosets in 3D space, a system capable of tracking 3D poses of
multiple marmosets is highly desired. In addition, the ability to
control experimental stimuli in real time based on the marmo-
set’s positions or actions®® would give researchers power to
conduct a wider range of behavioral and physiological experi-
ments in freely roaming marmosets. Existing systems are unable
to fulfill these specific requirements. In this study, we have devel-
oped an efficient and user-friendly real-time 3D pose tracking
system for multiple marmosets, which can be flexibly adapted
by a wide range of researchers to study the marmoset’s natural
behaviors.

The MarmoPose described in this report is a deep-learning-
based 3D pose tracking system, with minimal hardware re-
quirements, specifically designed for reconstructing the 3D
poses of single or multiple marmosets freely moving in their
home cage environment. In MarmoPose, multi-view images
captured by four (or more) cameras are first processed by
deep neural networks to predict the 2D coordinates of 16
body locations of each marmoset. Subsequently, visible 3D
body locations are reconstructed using triangulation, while
invisible 3D body locations are estimated through a denoising
autoencoder (DAE) incorporating a marmoset skeleton model.
MarmoPose offers several advantages over existing systems:
(1) this is the first system to enable comprehensive 3D pose
tracking for multiple marmosets; (2) this system supports
real-time closed-loop experimental control based on the 3D
poses and positions of marmosets, which could be integrated
with other experimental functions, including stimulus playback
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and neural recording; (3) this system employs a marmoset skel-
eton model for 3D coordinate optimization, thereby improving
the precision of the reconstructed 3D poses and rendering it
possible to estimate invisible body locations in the cameras’
blind spots; (4) this system is flexible, as each module can be
independently modified to accommodate new experimental
setups, such as varying the number of marmosets in the
cage or different obstacle configurations; and (5) this system
is designed for user-friendly deployment in a typical marmoset
family cage (0.7 x 1 x 0.8 m) without additional modifications
and can, therefore, be easily adapted to other housing or
experimental environments.

RESULTS

Overview of the MarmoPose system

MarmoPose is a 3D pose tracking system specifically designed
for both single and multiple marmosets. It processes video
streams from multiple cameras and outputs the estimated
body locations of marmosets in a 3D space. The system was
developed for a typical marmoset family cage (1 x 0.7 x 0.8
m) with four video cameras mounted on the upper corners, as
shown in Figure 1A. Marmosets can freely move around in the
cage, which is equipped with wooden perches, wire mesh plat-
forms, and small sticks to encourage naturalistic behaviors.
Notably, the cameras are fixed on the four top corners inside
the home cage so that such a setup does not require any mod-
ifications of the cage and thus can be easily deployed in other
housing cages.

We selected 16 locations of the body to capture the posture
of a marmoset (head, left/right ear, neck, spinemid, left/right
elbow/hand/knee/foot, tailbase, tailmid, and tailend). As anno-
tated in Figure 1B, each dot represents one of the body loca-
tions, and the lines represent the marmoset skeleton. Invisible
body locations from this view are indicated by transparent
dots with a white outline. In scenarios involving multiple mar-
mosets, maintaining consistent identification of each individual
across different camera views is crucial for accurate 3D trian-
gulation. To ensure reliable identification of individuals, we
applied a harmless dye to their ears to clearly distinguish
them (for n marmosets, n — 1 are marked by different colors,
while one is unmarked). For instance, the marmoset marked
with blue dye is correspondingly annotated with blue in
Figure 1B.

Figure 1C illustrates the workflow of MarmoPose, consisting
of two main stages. In the first stage, 2D predictions were
generated for each video. For images containing multiple mar-
mosets, we first trained a detection model, adapted from
RTMDet,*° to detect the bounding box as well as the identity
of each marmoset (Figure 1D). Subsequently, we trained a
pose estimation model, adapted from RTMPose,*” to predict
16 body locations based on the images cropped around these
bounding boxes (Figure 1E). We adopted the two-stage
approach due to its flexibility in accommodating new experi-
mental setups and the relatively small size of marmosets in
each camera view. To train these deep neural networks, we
labeled the Marmoset3K dataset (see STAR Methods) based
on 1,527 images containing one marmoset and 1,646 images
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Figure 1. MarmoPose is a complete system for multi-marmoset 3D pose tracking

(A) Experimental setup of MarmoPose. Four cameras are mounted on the upper corners of the marmoset home cage (1 x 0.7 x 0.8 m), and wooden perches and
wire mesh platforms are placed in the cage as their daily environment. Marmosets can freely move without any interference.

(B) Example (cropped) images with manual annotations for the Marmoset3K dataset. Each dot represents one of the 16 body locations (transparent dots with
white outlines denote invisible body locations from this camera view), and the lines indicate the marmoset skeleton.

(C) Diagram of the whole workflow of MarmoPose.

(D) Example (cropped) image with predicted bounding boxes, where the instance identity of the marmoset is denoted by the color of the bounding box.
(E) Example (cropped) images with predicted body locations, where invisible body locations are omitted.
(

F) lllustration of 3D triangulation with 2D predictions.

containing two marmosets across different camera views.
Each image was annotated with the 16 body locations and
identity information for each instance. In the second stage, in-
stances with the same identity from all camera views were in-
tegrated and triangulated into 3D poses using camera param-
eters (Figure 1F), which were calibrated once the cameras

were fixed (see STAR Methods). Subsequently, we employed
a DAE®® integrated with prior knowledge of a marmoset skel-
eton model to reconstruct invisible body locations (see Fig-
ure 3C). Finally, an optional step could be performed to refine
the 3D poses further using an iterative optimization method
(see STAR Methods). As a result, MarmoPose can accurately
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Figure 2. MarmoPose offers greater accuracy and robustness in tracking 3D poses of multiple marmosets compared to previous methods
(A) An example demonstrating one frame of the visualized videos generated by MarmoPose. Four corners show images from 4 camera views with predicted 2D
body parts and identities, while the central part shows the reconstructed 3D poses.

(B) Boxplots of 3D Euclidean errors for MarmoPose and human variability evaluated on the Marmoset3D test dataset. 16 body locations are grouped into 4
categories based on their anatomical locations (head: head and left/right ear; spine: neck and spinemid; limbs: left/right elbow/hand/knee/foot; and tail: tailbase,
tailmid, and tailend). Human variability indicates the error between the hand-labeled ground truths on the same data from two different people. (n = 258 instances).
In the boxplots, the horizontal line within each box represents the median, the box spans the interquartile range (IQR), and whiskers extend to the farthest data
points within 1.5x%IQR.

(C) 3D reconstruction accuracy as a function of error threshold evaluated on the test data (n = 71 instances) for a single marmoset. Body locations are broken
down to the same categories as in (B).

(D) 3D reconstruction accuracy as a function of error threshold evaluated on the test data (n = 152 instances) for paired marmosets.

(E-H) 3D reconstruction errors for a single marmoset and paired marmosets. Each dot represents one of the body locations, with surrounding circles denoting the
75th percentile of the 3D Euclidean errors, and histograms correspond to the full error distribution evaluated on the test data (n = 84 instances for single marmoset
dataset; n = 146 instances for paired marmosets dataset).

estimate 3D poses of the marmosets with both visible and information (Figure 2A). In addition, MarmoPose provides an
invisible body locations. To help visualize the estimated 3D  online process module to enable real-time experimental con-
poses, MarmoPose also generates videos combining images trol based on the 3D poses of marmosets. This module will
from camera views with predicted body locations and identity = be discussed in detail below.
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MarmoPose offers greater accuracy and robustness in
tracking 3D poses of multiple marmosets compared to
previous methods

Figure 2A shows a visualized frame generated by MarmoPose.
Original images from the four cameras are annotated with the
predicted identities, bounding boxes, and 2D poses of two mar-
mosets in the cage. The central plot shows the reconstructed 3D
poses of the two marmosets, reflecting the marmosets’ 16 body
positions and poses as they roam freely in the cage. This figure
demonstrates that MarmoPose can track the 3D poses of multi-
ple marmosets (see Videos S1 and S2).

In order to evaluate the accuracy of MarmoPose quantitatively,
we constructed a dataset named Marmoset3D (see STAR
Methods) by triangulating hand-labeled 2D coordinates from
multiple camera views at the same time point. The Marmoset3D
dataset contained 522 3D ground-truth instances with 8,352
body locations (16 body locations per each instance), consisting
of 140 instances collected from 140 time points with single
marmoset (from four marmosets) and 382 instances collected
from 191 time points with paired marmosets (from three pairs of
marmosets). The hand-labeled 2D coordinates were first anno-
tated by one person and then proofread by a second person to
ensure their accuracy. However, because marmosets are rela-
tively small in each camera view and there were no obvious
landmarks on their bodies for precise localization, there was inev-
itably variability in the 2D coordinates annotated by the two peo-
ple. Theoretically, this human variability is the lower bound of the
error of MarmoPose. We computed the human variability by
measuring the error between hand-labeled ground truths on the
same data from two different people. Figure 2B shows the 3D
Euclidean errors of MarmoPose and human variability, in which
16 body locations are grouped into 4 categories based on their
anatomical locations for clarity (head: head and left/right ear;
spine: neck and spinemid; limbs: left/right elbow/hand/knee/
foot; and tail: tailbase, tailmid, and tailend). MarmoPose can
achieve comparable 3D errors to human variability: the median
errors of human variability for these 4 groups are 0.29 (head),
4.77 (spine), 6.92 (limbs), and 1.12 (tail) mm, and the median er-
rors of MarmoPose for these 4 groups are 2.82 (head), 8.25
(spine), 12.76 (limbs), and 8.75 (tail) mm.

Typically, multi-marmoset 3D pose tracking can be achieved
by combining multi-animal 2D pose tracking systems, such as
DeepLabCut or SLEAP, with triangulation. However, such an
approach faces practical challenges encountered in real experi-
ments, such as estimating occluded body locations, and lacks
the necessary robustness and accuracy. MarmoPose is the first
comprehensive system designed to track the 3D poses of multi-
ple marmosets and optimized for practical use and higher accu-
racy. For comparison, we trained and selected the best model us-
ing SLEAP on the same dataset to estimate the 2D poses of
multiple marmosets, followed by the same 3D reconstruction
process to obtain 3D poses. Figures 2C and 2D illustrate the 3D
reconstruction accuracy as a function of the error threshold
for both MarmoPose and SLEAP combined with triangulation
(abbreviated as Sleap&Tri) evaluated on the Marmoset3D test da-
taset of single marmoset and paired marmosets, respectively,
where the accuracy is defined as the percentage of 3D body loca-
tions with 3D Euclidean errors below the error threshold, with 16
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body locations grouped into four categories. As illustrated in Fig-
ures 2C and 2D, MarmoPose shows significantly higher accuracy
than Sleap&Tri across all body locations. Quantitatively, the
typical length of an adult marmoset body is about 20 cm
(excluding the tail, which is also approximately 20 cm long). Using
a threshold of 20 mm (about 10% of body length), MarmoPose
achieves accuracies of 95% for head, 93% for spine, 68% for
limbs, and 89% for tail on the single marmoset test data. In
contrast, Sleap&Tri exhibits significantly lower accuracies, with
85% for head, 65% for spine, 35% for limbs, and 65 % for tail (Fig-
ure 2C). Similarly, on the paired marmosets test data,
MarmoPose achieves accuracies of 94% for head, 85% for
spine, 68% for limbs, and 83% for tail, while Sleap&Tri exhibits
significantly lower accuracies of 83% for head, 76% for spine,
48% for limbs, and 56 % for tail (Figure 2D). The improved perfor-
mance of MarmoPose is primarily attributed to two factors. First,
we trained state-of-the-art neural networks for detection
(RTMdet)*® and pose estimation (RTMPose).®” Due to their elab-
orate architectures, these networks have demonstrated higher
accuracy and faster inference speed in multi-person pose esti-
mation scenarios compared to the series of neural networks
used in SLEAP. Second, we incorporated prior knowledge of
the marmoset skeleton model to optimize the 3D poses, which in-
cludes estimating the missing data caused by occlusion and
refining outliers for greater accuracy (see the following section
and STAR Methods). These key advantages make MarmoPose
more accurate and robust.

Figures 2E and 2G display the 3D reconstruction errors with two
representative images. The 75th percentile of the 3D Euclidean
errors for each body location is represented by a circle. The error
distributions are shown in Figures 2F and 2H. Generally, body lo-
cations on the head have smaller errors due to the existence of a
boundary between brown and white hairs, while body locations
on the limbs have larger errors due to high degrees of freedom
and frequent occlusion.

MarmoPose employs a collection of post-processing
algorithms to further improve accuracy and robustness
Accurately reconstructing the 3D poses of multiple marmosets
typically involves three common challenges: (1) marmoset
misidentification, (2) missing values in the 3D poses due to oc-
clusions, and (3) inaccuracy in some predicted body locations.
MarmoPose mitigates each of these issues using a collection of
specialized post-processing algorithms.

First, Figure 3A illustrates an example of marmoset misidenti-
fication and correction: in camera 2, the identities of the two mar-
mosets are incorrectly recognized due to occlusion of their
marked ears, but the identities are correctly identified in the re-
maining cameras (only camera 4 is shown here), and this kind
of misidentification can be corrected through post-processing.
To correct the identities, MarmoPose groups the detected
bounding boxes across multiple videos using epipolar geometry
constraints and then addresses potential misidentifications with
low confidence scores by integrating the initially predicted IDs
with the newly grouped IDs (see STAR Methods). This approach
increases the identification accuracy from 95.1% to 96.5% for
two marmosets and from 93.2% to 95.0% for four marmosets,
as depicted in Figure 3B.
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Figure 3. MarmoPose employs a collection of post-processing algorithms to further improve accuracy and robustness

(A) An example illustrating identity misidentification: in camera 2, the identities of the two marmosets are incorrectly recognized due to occlusion of their marked
ears, but the identities are correctly identified in the remaining cameras (only camera 4 is shown here), and this kind of misidentification can be corrected through
post-processing.

(B) Identification accuracy of the detection model with and without ID correction algorithm, evaluated on the paired marmosets dataset.

(C) lllustration of the marmoset skeleton model used as one of the terms in the loss function of DAE to guide the reconstruction of missing body locations.
Numbers (mm) indicating the median length of the distances between two body locations measured on real marmosets, with different weights assigned based on
their degrees of freedom.

(D) Boxplots of 3D Euclidean errors in test data for visible and invisible body locations. Note that neck, spinemid, and tailbase have no invisible body locations
because they are used to normalize the poses. In the boxplots, the horizontal line within each box represents the median, the box spans the interquartile range
(IQR), and whiskers extend to the farthest data points within 1.5xI1QR.

Second, in the scenarios involving multiple marmosets freely  enhances its ability to capture the underlying structure of mar-
moving in the home cage, some of their body locations willinev-  mosets. As a result, the DAE can more accurately reconstruct
itably be self-occluded or occluded by other animals and ob- the missing body locations, even with a limited amount of
jects like logs or shelves in the cage, leading to missing data training data. Figure 3D shows the 3D error distributions for
in the reconstructed 3D poses. Inspired by a previous study each body location when it is visible (computed by triangulation
on 2D human pose estimation,® we trained a DAE to recon-  of multiple 2D predictions) or invisible (estimated by DAE) eval-
struct the missing 3D body locations, which receives the 3D co-  uated on the Marmoset3D test data. Note that neck, spindmid,
ordinates of 16 body locations with missing data as input and and tailbase do not have corresponding invisible values
outputs the estimated complete coordinates. We trained the because they are used to normalize the poses during the appli-
model by randomly masking some body locations to simulatein-  cation of the DAE. It can be observed that for body locations on
puts with missing data based on the Marmoset3D dataset (see the head or spine, the errors of estimated coordinates are
STAR Methods). below 10% of the body and tail lengths (40 mm), whereas the

In order to guide the DAE to estimate missing coordinates errors of tail positions are the highest. This is reasonable
better, we added an extra loss term to constrain the lengths be-  because marmosets’ tails are long and flexible, making their
tween two body locations in the reconstructed 3D poses based  precise locations more difficult to predict. Although the missing
on prior knowledge of marmosets. We measured the median  data predicted by the DAE might not achieve the accuracy level
length of distances between two body locations on three of visible body locations, they may still offer a reasonable esti-
normal adult marmosets to form a skeleton model (Figure 3C).  mation of the missing body locations within a controlled exper-
Incorporating this prior knowledge of marmosets into the model  imental setting.
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Figure 4. MarmoPose can be easily adapted to new experimental setups with minimal modifications

(A) Schematic illustrating the process of adapting MarmoPose to new environments. In similar setups, MarmoPose could be used directly. For new experiment
setups, the detection model and the pose estimation model can be fine-tuned independently to adapt to new conditions with minimal additional training data.
(B) An example of similar setups. Two marmosets are in a home cage approximately half the size of the one used in the standard setup.

(C) An example of new marmoset identities: among the four marmosets, two of them (the green one and the red one) are not included in the training data.
Therefore, the detection model needs to be fine-tuned to recognize them correctly.

(D) An example of new experimental setup: additional objects are placed in the home cage to reflect their daily environment. Therefore, the pose estimation model

needs to be fine-tuned to further improve accuracy.

(E) The 3D reconstruction error of the fine-tuned model under a new environment.

The third issue involves inaccuracy in the 2D poses predicted
by the pose estimation model, especially when multiple marmo-
sets are close to each other. Simply adding more training data
to improve the model’s accuracy is not sufficient to effectively
address this problem. Inspired by a previous study,?* we incor-
porated an optimization step at the final stage that refines the
3D poses using spatial and temporal constraints (see STAR
Methods). This approach reduces the influence of outliers, gen-
erates smoother coordinates, and improves the overall accu-
racy and plausibility of the final 3D poses.

MarmoPose can be easily adapted to new experimental
setups with minimal modifications

In practical behavioral experiments with marmosets, researchers
may want to place the animals into customized environments
rather than just standard setups. This typically involves changes
in two aspects: adding new marmosets with different identities
or adding more objects to the home cage for experimental pur-
poses. Unlike previous animal pose tracking methods that require

a comparable amount of training data to retrain the entire model
from scratch, the two-stage prediction design of MarmoPose al-
lows for easy adaptation to such new environments with minimal
additional training data for fine-tuning.

Figure 4A summarizes the steps required for researchers to
employ MarmoPose in new experimental setups. If the new
setup is similar to the standard configuration, then MarmoPose
can be used directly without additional modifications. Figure 4B
provides an example: two marmosets are in a home cage
approximately half the size of the standard setup, with no new
identities introduced. Video S3 demonstrates the seamless
application of MarmoPose in this scenario. For more complex
setups, additional fine-tuning data might be necessary. In the
setup shown in Figure 4C, a family of four marmosets are in
the home cage, with two of them (the green one and the red
one) not included in the original training data; naturally, the
detection model is unable to recognize their identities by default.
In this case, only a small amount of training data needs to be an-
notated, requiring just the bounding boxes and identities (pose
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annotations for each instance can be skipped) to fine-tune the
detection model. In fact, we annotated only 100 images (which
took about 1 h) to fine-tune the detection model, achieving com-
parable accuracy to the standard setup (see Video S4). In
another scenario, shown in Figure 4D, a subset of marmosets
from Figure 4C are placed in a more complex environment with
additional objects. In this case, the marmosets might interact
with the objects in ways that exceed the generalization capability
of the pose estimation model, necessitating more training data to
further improve the accuracy. Actually, we annotated 100 com-
plete images to fine-tune the pose estimation model. As shown
in Figure 4E, the average 3D reconstruction error in this new envi-
ronment increased slightly by 0.8 mm compared to the original
setup. This increase is acceptable given the higher complexity
of the environment, and accuracy can be further improved with
more training data for fine-tuning. Video S5 provides a demon-
stration of MarmoPose in this environment. These three exam-
ples highlight the flexibility and adaptability of MarmoPose to
new experimental setups with minimal modifications. Fine-tun-
ing the models typically requires only a few hundred new training
data, which can be annotated in a few hours by researchers
familiar with the annotation pipeline.

MarmoPose enables real-time experimental control
based on events detected from 3D poses

Real-time experimental control triggered by events detected
from 3D poses is highly desired by marmoset and other non-hu-
man primate researchers, as it enables a fully automated behav-
ioral experiment pipeline. To meet this need, MarmoPose pro-
vides a ready-to-use online processing module that handles
images from multiple real-time video streams and outputs 3D
poses frame by frame with minimal latency. It supports user-
customized event triggers based on the 3D poses and positions,
allowing real-time modification of experimental stimuli.

To achieve this goal, we first adopted multi-processing and
multi-threading to handle different tasks in parallel. As the work-
flow chart shows in Figure 5A, process-1 (prediction process)
reads images from real-time video streams (cached by multiple
threads) and performs 2D detection and 3D reconstruction.
The images and pose data are sent to process-2 (display pro-
cess) for visualization and process-3 (main process) for trig-
gering customized events and performing experimental control.
Executing different tasks in separate processes ensures that
resource-intensive tasks like neural network inference and 3D
image rendering do not clock each other, thereby minimizing
overall system latency. Secondly, we utilized TensorRT to deploy
the PyTorch model in half-precision, which significantly boosts
the inference speed with minimal accuracy loss.

To evaluate the real-time performance of MarmoPose, we first
benchmarked the combined inference speed of the detection
model and pose estimation model. The benchmarks were per-
formed across various numbers of marmosets in the videos
and different inference batch sizes. As illustrated in Figure 5B,
with a batch size of 4, the original PyTorch model achieved 68
fps for videos with 1 instance, 53 fps for 2 instances, and 39
fps for 4 instances. After the deployment via TensorRT, the infer-
ence speed was significantly increased to 112 fps for videos with
1 instance, 100 fps for 2 instances, and 82 fps for 4 instances. To
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process multiple frames in real time, we combined the frames
from different cameras into a pseudo-batch for inference (see
STAR Methods). Then, we evaluated the latency distribution of
each part across different processes. Figure 5C shows the la-
tency breakdown of the standard setup, which includes 4 cam-
eras (1,920%1,080 resolution) and 2 marmosets present in
each video. In the predict process, the mean latency for predict-
ing 2D poses from multiple cameras is 37 ms, with an additional
3 ms required for 3D pose reconstruction. In the display process,
data generated by the predict process are received, and the 3D
image is rendered, captured, and displayed on the screen for
real-time monitoring. The rendering step takes approximately
23 ms, while the display step takes around 5 ms. Consequently,
the overall computation latency for each process is under 40 ms,
enabling MarmoPose to perform real-time experimental control
based on events detected from the 3D poses. It is important to
note that deploying the model in half-precision inevitably results
in some loss of accuracy. We evaluated the 3D distance errors
of both the original and the deployed model across 4 groups of
body locations on the Marmoset3D test dataset. The average
accuracy loss (less than 7%) is acceptable, given the significant
speed improvement (Figure 5D).

We also evaluated the performance of the real-time processing
module in a demonstration control experiment: playing different
sounds based on the detected gaze direction from 3D poses.
When the marmoset looks forward, white noise is played (indi-
cated by a lighting icon), and when the marmoset looks left, mu-
sic is played (indicated by a note icon). Since we reconstructed
the 3D coordinates of the head, left ear, and right ear, we could
easily compute the marmoset’'s gaze direction (see STAR
Methods) based on real-time 3D poses and perform correspond-
ing sound control. The poses of the marmoset at different time
points are shown in Figure 5E. The marmoset initially looks for-
ward during the first 40 ms and then turns its head to left, causing
the sound stimuli to switch from white noise to music accord-
ingly. With an average latency of less than 40 ms, MarmoPose
can reliably track such quick movements in real time and trigger
events rapidly. This demonstration highlights the powerful real-
time processing ability of MarmoPose. In practical applications,
researchers can set different trigger events based on the 3D
poses and control various types of stimuli, such as sound, image,
and more.

MarmoPose enables quantitative analysis of behaviors
for multiple marmosets

A significant aspect of neuroscience research involves quanti-
fying animal’s natural behaviors.???%:3%4% With the accurate 3D
poses reconstructed by MarmoPose, researchers can study
marmoset behavioral patterns and potential preferences across
various experimental setups by extracting features from high-
dimensional data using machine learning methods. Here, we
demonstrate two typical applications: identifying marmoset
behavioral patterns using unsupervised learning and quantifying
specific behaviors, like gaze, between marmosets.

With the 3D coordinates of 16 body locations of multiple mar-
mosets reconstructed by MarmoPose, additional features like
movement velocity can be easily computed. Generally, more
complex behavioral states can be represented by nonlinear
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Figure 5. MarmoPose provides an online process module to enable real-time experimental control based on events detected from 3D poses
(A) Schematic of real-time experimental control. Process-1 (predict process) reads images from real-time video streams (cached by multiple threads) and perform
2D detection and 3D reconstruction. The images and pose data are sent to process-2 (display process) for visualization and process-3 (main process) for
triggering customized events and performing experimental control.

(B) Inference fps variation across different number of instances in videos, evaluated over varying batch sizes, where each condition is evaluated on four different
videos containing 1,000 frames. Solid lines represent the original PyTorch model, while dashed lines denote the model deployed using TensorRT in FP16 mode.
Each point represents the mean fps, with error bars indicating 95% confidence interval.

(C) Latency distribution of each part across different processes, with two instances present in the video. In the violin plots, the central white line represents the
median latency, the black box spans the interquartile range (IQR), and the upper and lower bounds of each violin represent the estimated density distribution
based on kernel density estimation.

(D) Boxplots illustrating the 3D Euclidean errors of both the PyTorch model and the TensorRT-deployed model evaluated on the Marmoset3D test dataset. 16
body locations are grouped into 4 categories based on their anatomical locations. In the boxplots, the horizontal line within each box represents the median, the
box spans the interquartile range (IQR), and whiskers extend to the farthest data points within 1.5xI1QR.

(E) An example demonstrating real-time event triggering and experimental control: when the marmoset looks forward, white noise is played (indicated by a lighting
icon); when the marmoset looks left, music is played (indicated by a note icon). In the example, the marmoset initially looks forward during the first 40 ms (1 frame)
and then turns its head to the left, causing the sound stimuli to switch from while noise to music accordingly. The real-time control module enables MarmoPose to
perform timely control with minimal latency based on accurately detected events.
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Figure 6. MarmoPose enables quantitative analysis of behaviors for multiple marmosets

(A) Posture clusters generated by applying watershed transform to the t-SNE density map. Each cluster represents a typical marmoset behavior.

(B) An illustration of 8 distinct poses. For each case: left, cropped raw image from one camera; right: reconstructed 3D pose.

(C) The spatial distribution of two freely roaming marmosets (red, marmoset 1; blue, marmoset 2) within a typical home cage over 1 h.

(D) An example of two marmosets looking at each other. Left: cropped raw image from one camera; right: reconstructed 3D poses. Red and blue arrows indicate

the gaze direction of each marmoset.

(E) The distribution of mutual gaze between two marmosets over an 8-s time range. M1, marmoset 1; M2, marmoset 2. The red timeline indicates when M1 is
looking at M2, and the blue timeline indicates when M2 is looking at M1. Yellow shading highlights the periods when both marmosets are looking at each other.

combinations of these basic features, which can be clustered and
recognized through unsupervised learning. In Figure 6A, using
the 3D poses of two marmosets freely roaming in a home cage
within 1 h, we first reduced the high-dimensional features into
16 dimensions using principal-component analysis (PCA), and
then we generated behavioral density maps and identified clus-
ters by applying watershed transform over the density represen-
tation of the further reduced t-distributed stochastic neighbor
embedding (t-SNE) space (see STAR Methods). Each cluster rep-
resents a typical behavior of the marmosets in daily life, including
standing, jumping, walking, running, hanging, climbing, sitting,
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and proning (Figure 6B). This behavior map can further be utilized
to characterize the differences in behavior between individual
marmosets or for a single marmoset under varying conditions.
Position and head direction are the two most straightforward
features we can extract from the original 3D poses. In Figure 6C,
we display the positions of two marmosets freely roaming in the
home cage, each dot representing a spatial location where the
marmoset stays longer than 1 s. We observed that both marmo-
sets prefer to stay on the wooden sticks and wire mesh platforms
or climb and stay at the top corners of the home cage. Figure 6D
provides an example of two marmosets looking at each other.
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MarmoPose can accurately detect this behavior by calculating
the vector direction from the midpoint between the left and right
ears to the head (see STAR Methods). Figure 6E shows the gaze
interaction between two marmosets during an 8-s clip, where the
red timeline indicates when marmoset 1 is looking at marmoset
2, and the blue timeline indicates when marmoset 2 is looking at
marmoset 1. Yellow shading highlights the periods when both
marmosets are looking at each other. In general, we found that
even paired marmosets rarely look directly at each other: over
a 1-h period, marmoset 1 looked at marmoset 2 only 4.1% of
the time, and marmoset 2 looked at marmoset 1 only 7.9% of
the time, with mutual gaze occurring only 0.3% of the time.

DISCUSSION

Here, we described MarmoPose, which enables real-time 3D
pose tracking for multiple freely moving marmosets in a housing
cage environment. The primary considerations in designing
MarmoPose are to make it efficient, cost effective (using minimal
hardware), real time, and easily deployable in typical housing ca-
ges. This system is specifically designed for marmosets in order
to optimize its performance, but it could be adapted for other
large animal species with specific modifications. It has several
distinct features comparing to other published pose detection
systems for freely moving animals. First, MarmoPose leverages
prior knowledge of a marmoset skeleton model to estimate invis-
ible body locations and refine 3D poses. Second, MarmoPoseis a
user-friendly system that can be deployed in a typical marmoset
home cage environment and be easily adapted to new experi-
mental setups with minimal modifications. Third, MarmoPose
provides an online process module for users to perform real-
time closed-loop experimental control based on the events de-
tected from the 3D poses, which can be integrated with other
experimental methodologies, such as stimulus playback and
neural recording.

To the best of our knowledge, MarmoPose is the first system
to enable practical real-time 3D pose tracking. Previous sys-
tems have either lacked the speed necessary for real-time 3D
pose tracking or only supported 2D real-time pose tracking.
Achieving 3D real-time pose tracking is inherently challenging
because it requires synchronizing multiple video streams,
managing the heavier computational burden from processing
multiple frames simultaneously, and performing complex opti-
mizations for data storage and real-time 3D visualization. To
minimize latency, we implemented several key optimizations,
including adopting multi-processing and multi-threading to
handle different tasks in parallel and deploying the model using
TensorRT for accelerated inference. These optimizations ensure
that MarmoPose can deliver efficient and reliable performance
in real-time applications. While MarmoPose represents a signif-
icant advancement in 3D real-time pose tracking, it does have
certain limitations. For instance, deploying the models in half-
precision results in a slight loss of accuracy. Additionally,
some optimization steps are omitted to achieve faster inference
speed. However, the accuracy required for real-time experi-
mental control is typically lower than that needed for precise
offline analysis, making these trade-offs acceptable in most
scenarios.
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In scenarios involving multiple marmosets, particularly when
they are in close proximity, accurately distinguishing individual
body locations is a challenging task. This is a common problem
in the field of multi-object pose tracking that has not been ad-
dressed very well. Since each marmoset occupies only a small
part of the whole image and their rapid movements often lead to
motion blur, it is challenging even for human annotators to
accurately locate specific body locations. MarmoPose has em-
ployed a list of techniques to address this issue, including a
DAE integrated with the marmoset skeleton to estimate missing
data and optimization of the 3D poses with spatial and temporal
constraints. Additionally, a practical solution is to keep a bal-
ance between specific experimental demands and system ac-
curacy. In many experimental situations, the focus might be
only on a subset of body locations. Therefore, we can choose
to ignore the misidentified data and concentrate on the relevant
body locations. Furthermore, in social scenarios, the overall
interaction of the marmosets might be more significant than
the precise poses of each body location. Therefore, it might
be more effective to treat marmosets that are close to each
other as a single entity without attempting to distinguish every
body part clearly.

In the current setup, four cameras are fixed on the upper cor-
ners inside the home cage to maximize coverage and minimize
maintenance and potential damage by the animals. This is a sim-
ple and effective arrangement, which can be easily deployed in
other housing cages without extra modifications, retaining mini-
mal computational costs at the same time. While adding more
cameras to cover more blind spots is a straightforward solution
to reduce invisible body locations and improve system accuracy,
it increases computing loads and slows down the processing
speed. Practically, the number of cameras used should be deter-
mined by the specific experimental demands. The current
arrangement with four cameras is sufficient for arange of research
purposes. For researchers aiming for higher precision, more cam-
eras can be added to cover more blind spots, which is also sup-
ported by MarmoPose. However, it is important to consider that
increasing the number of cameras would lead to longer process-
ing time and output latency.

The ability to automatically track the poses of freely moving
marmosets in 3D space in real time using MarmoPose could
significantly improve studies of natural behaviors in this field.
Traditionally, studies on vocal communications™*' and visual
directional preference °~'" have relied on manually processed
audio and video recordings. MarmoPose could be used to boost
these studies by providing more accurate and comprehensive
behavioral quantifications. Given their social nature and ease of
handling, marmosets are ideal for comparative behavioral exper-
iments with humans. For example, MarmoPose could be used to
describe and compare the behavioral evolution and natural pref-
erences between marmosets and humans.’'"*? Moreover, due
to their relatively high reproductive cycles compared to other
primates, marmosets are well suited for transgenic modifica-
tions'"*® and disease modeling.”*™" Integrating MarmoPose
with other methodologies, such as neural recording and optoge-
netics, offers possibilities to explore neural mechanisms underly-
ing natural behaviors in both normal and genetically modified
marmosets.
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Limitations of the study

In scenarios involving multiple marmosets, the ears of the mar-
mosets need to be marked by the same color schemes as used
in our standard setup for MarmoPose. Alternatively, researchers
can fine-tune the detection model to recognize new colors. We
adopted this simple yet effective approach because relying solely
on spatial and temporal information for consistent individual
identification is impractical during prolonged recording without
an absolute identifier, like a particular color. Besides, when the
marmosets are in close proximity, MarmoPose may fail to accu-
rately detect individual body locations due to indistinguishable
boundaries caused by similar hair colors. Although we have em-
ployed a series of optimizations algorithms to mitigate this issue,
it may still occasionally occur.

When using the online processing module of MarmoPose for
real-time experimental control, the system will record raw
videos, rendered video of 3D poses, and predicted 2D and
3D pose data. However, due to fluctuations in the real-time
video stream and system processing speed, some frames
may be skipped to ensure the latest frames are processed in
a timely manner, resulting in missing data at certain time points.
Additionally, as discussed above, the half-precision TensorRT-
deployed model exhibits an average accuracy loss of less
than 7%. Therefore, it is recommended to use the online pro-
cessing module to perform real-time experimental control
and rely on the offline processing pipeline for detailed behav-
ioral analyses.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Marmoset3K This study https://doi.org/10.5281/zenodo.14672425.

Experimental models: Organisms/strains

Common marmoset Tsinghua University N/A

Software and algorithms

MarmoPose This study https://github.com/Leoswordy/MarmoPose;
https://doi.org/10.5281/zenodo.14672988

Python 3.8 Open source N/A

PyTorch 2.1 Open source https://github.com/pytorch/pytorch

Other

Recording cameras Hikvision N/A

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

All marmosets used in this study were healthy adults with normal body size and weight, ranging in age from 2 to 9 years. Specifically,
10 marmosets (6 males and 4 females) were used to create the training dataset. 6 marmosets (3 males and 3 females) were used to
create the finetuning dataset across three experimental scenarios; 3 marmosets (1 male and 2 females) were used to build the
marmoset skeleton model; 1 marmoset (male) was used to test the real-time experimental control module. All experimental proced-
ures were approved by the Science and Technology Ethics Committee at Tsinghua University. The study complied with institutional
guidelines for the care and use of animals in research. Food and water were freely available to encourage natural behaviors.

METHOD DETAILS

Datasets

To develop and evaluate MarmoPose, a set of videos of both single and multiple marmosets were collected. All videos were recorded
using four synchronized cameras (HIKVISION DS- 2CD252CZY-ZFR) mounted at the upper corners of a typical marmoset home cage
(1 m x 0.7 m x 0.8m). The cameras captured videos at a resolution of 1920 x 1080 x 3 pixels with 25 fps. Each home cage was
equipped with daily objects, including wooden perches, wire mesh platforms, food boxes and small sticks to encourage naturalistic
behaviors in the marmosets.

Ground truth annotations were initially labeled using tools provided by SLEAP, including the 2D coordinates of 16 body locations
for each marmoset along with their corresponding identities. These annotations were subsequently converted into the COCO*®
format using a custom Python script, enabling the training of modes incorporated within OpenMMLab.

Marmoset3K

For the subset of Marmoset3K containing single marmoset, two human annotators labeled 1527 frames (1527 instances) from 4
different camera views across 16 videos capturing a single marmoset freely moving in the home cage. Four adult marmosets without
additional modifications were used in this subset. For each marmoset instance, 16 body locations were labeled (head, leftear, right-
ear, neck, spinemid, leftelbow, lefthand, rightelbow, righthand, leftknee, leftfoot, rightknee, rightfoot, tailbase, tailmid, tailend) care-
fully. If a body part is occluded from a camera view, it is labeled as invisible and will not be included in the training and testing process.

For the subset of Marmoset3K containing paired marmosets, three human annotators labeled 1646 frames (3292 instances) from 4
different camera views across 12 videos capturing a pair of marmosets freely moving in the home cage. Six (three pairs) adult mar-
mosets were used in this subset. Since the consistence of marmosets’ identities across different camera views is essential for ac-
curate 3D triangulation, we dyed the ears of one marmoset in each pair with harmless blue color to significantly distinguish them. For
each pair of marmosets, the one dyed blue was annotated ID ‘1’ and the other one with normal white ears was annotated ID ‘2’, and
each instance was annotated with the same 16 body locations.

In total, the Marmoset3K dataset contains 3173 labeled images comprising 4819 instances.

Marmoset3D

Ground truth of 3D poses are required in training denoising autoencoder and evaluating the accuracy of MarmoPose in 3D space,
which were obtained by triangulating precisely hand-labeled 2D coordinates from multiple camera views at the same timepoint.
To establish the Marmoset3D dataset, three human annotators labeled 522 3D ground truth instances, consisting of 140 instances
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triangulating from 560 images containing single marmoset and 382 instances triangulating from 191 images containing paired mar-
mosets. Two annotators labeled the images first and the third annotator proofread the labels to ensure the accuracy.

Finetuning dataset

As illustrated in Figure 4, deploying MarmoPose in a new environment with different setups requires a small amount of dataset for
finetuning. For the scenario involving a family of four marmosets (Figure 4C), 100 frames (400 instances) from 4 different cameras
views were annotated, and the ears of marmosets were dyed in blue, red, green with one left uncolored for identification. For the
scenario involving more complex setup (Figure 4D), 100 frames (200 instances) from 4 different cameras views were annotated.

Training 2D detection model and pose estimation model

MarmoPose employes a two-stage design for 2D pose tracking, utilizing a detection model adopted from RTMdet*® and a pose esti-
mation model adopted from RTMPose.*” The detection model predicts both the bounding box and the identity of each instance,
while the pose estimation model predicts 16 body locations for each cropped instance. This two-stage approach minimizes the addi-
tional data required for finetuning when deploying MarmoPose in a new environment.

Both models were trained on the Marmoset3K dataset, with a division of 80% (2624 images, 3978 instances) for training and 20%
(549 images, 841 instances) for testing. The detection model was trained for 300 epochs with a batch size of 16, and the training
procedure took 6.5 h. The original images (1920 x 1080 x 3) were downscaled to 640 x 640 x 3 as input for the detection model.
The pose estimation model was trained for 400 epochs with a batch size of 8, and the training procedure took 7.5 h. For each
instance, a 512 x 512 x 3 cropped image centered on the bounding box was used as input for the pose estimation model. Training
for both networks was conducted on a single NVIDIA RTX 4090 GPU using PyTorch 2.1.2.

SLEAP models training for comparison

We trained top-down models using SLEAP v1.3.0 on the same Marmoset3K dataset and selected the best configuration to estimate
2D poses of multiple marmosets. The resulting 2D poses were then processed through the same 3D reconstruction pipeline used in
MarmoPose to obtain 3D poses. For the centroid model, the parameters were configured as Max Stride = 32, filters rate = 1.5 and
sigma = 2.5. For the centered-instance model with identity, the parameters were configured as Max Stride = 64, filters rate = 1.5 and
sigma = 2.5. Other parameters were set to default value.

Identity correction

To address potential errors in predicted animal identities caused by occlusion or invisibility in certain camera views, an identity
correction post-processing step is applied. Each detected instance with a predicted identity in a camera view is treated as a graph
node. The average peripolar distance of visible body locations across different views are computed and used as the edge weight
between nodes. Then the graph is clustered into N; groups, where N; is the number of animals in the setup. The clustering is per-
formed by minimizing the group cost, ensuring that instances belonging to the same animal are grouped together. Finally, the identity
of each instance is updated based on the group identity, which is determined by the majority of the predicted identities within each
group.

Camera calibration and coordinate system alignment

To estimate the intrinsic and extrinsic parameters of multiple cameras for triangulation, we adopted camera calibration methods
similar to those provided by Anipose.”*“*® A standard checkerboard (11 x 9 squares with 45 mm square size) was placed in the
home cage and rotated at various angles to collection calibration videos from all camera views.

In order to align the reconstructed coordinate system with real-world spatial positions and dimensions, we developed a custom
labeling tool for users to define a new coordinate system. This tool allows users define a new coordinate system by marking three
specific points in at least two camera views: the original point, a point on the x axis, and a point on the y axis. Then these points
are triangulated into 3D coordinates, and the cameras’ extrinsic parameters are updated accordingly to fit the newly defined coor-
dinate system.

Triangulation

Random sample consensus (RANSAC) triangulation is employed to obtain accurate 3D coordinates by minimizing the impact of out-
liers in 2D predictions. Specifically, multiple possible combinations of predicted body locations from different camera views are trian-
gulated using linear least-squares,®*°° then the combination with the smallest reprojection error is selected as the final result.

Marmoset skeleton model

The marmoset skeleton model serves as a crucial prior knowledge for optimizing the 3D poses. As shown in Figure 3C, the skeleton
model defines the reference distances (mm) between each pair of joints. These reference values were derived by manually measuring
the distances between joints in three normal adult marmosets and averaging the results. These reference distances are divided into
two types of constraints: strong constraints, applied to rigid body location such as the head-ear pair, where the distance remains
nearly constant; and week constraints, applied to flexible body locations such as the knee-foot pair and the tail, where the distance
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varies due to soft tissue and rotation. These constraints are incorporated into several stages of the processing pipeline, including the
3D coordinates filtering, training of the denoising autoencoder and final skeleton optimization.

Pose normalization
To effectively train the denoising autoencoder (DAE) model and perform subsequent analysis, it is essential to normalize the 3D poses
into a egocentric coordinate system, as in real-world spatial space, similar poses might have entirely different coordinates depending
on their absolute positions and orientations. Given the original pose data P with a shape of (16,3), normalization is performed by
translating, rotating, and scaling P into an egocentric coordinate system. This process consists of the following steps.

First, set the middle of the spine (‘spinemid’) as the origin, translating all coordinates accordingly:

Pi = Pi - Pspr'nemid

Second, align the pose within a defined coordinate system. The upper end of spine (‘neck’) is aligned to the x axis, and the lower
end of spine (‘tailbase’) lies on the x-z plane. Using these points, construct the rotation matrix R and rotate the translated coordinates:

P, = RP;
Third, divide each coordinate by the distance L between ‘spinemid’ and ‘neck’:
~ P
P =
L

The resulting normalized pose P serves as both the input and output for the DAE, ensuring consistency and eliminating the effects
of translation and rotation during training and analysis.

Denoising autoencoder

Inspired by a pose estimation work on human,*® we adopted denoising autoencoder to fill in the missing data caused by occlusion,
which receives incomplete 3D poses as input and output the predicted complete 3D poses. Specifically, each pose is represented by
a matrix M, x3, where n is the number of body locations (n = 16 by default), and the elements are the 3D coordinated of each body
location in the real spatial space. We first normalized them into a egocentric coordinated system, and then flatten the matrix into
a vector V; x 3, as the input of the DAE. With the Marmoset3D dataset, we generated incomplete 3D poses by randomly masking
i(1 <i < 4)body locations to simulate the occlusion in real scenarios. These masked 3D poses and corresponding complete 3D
poses are used as input and output of the DAE respectively during training.

In this study, the encoder of DAE is composed of 2 fully connected hidden layers, with 256 and 128 hidden units respectively. Sym-
metrically, the decoder also consists of 2 fully connected hidden layers with 128 and 256 hidden units. We used 32 latent dimensions
to represent the input. The loss function consists of two parts: MSE calculating the difference between ground truth and recon-
structed poses; and joint loss constraining the length between some body locations. Joint loss incorporates prior knowledge of
the marmoset skeleton model into the model for guiding the reconstruction of missing body locations, making the DAE work better
with limited training data.

Real-time control module
The real-time control module in MarmoPose consists of three processes: (1) Prediction process. It reads the latest images from mul-
tiple live video streams cached by separate threads, then perform 2D detection and 3D triangulation and transmit the results to the
main process. (2) Display process. It reads the 2D images and 3D poses passed by the prediction process, then draw 3D poses com-
bined with 2D predictions for display. (3) Main process. It reads poses and images from the prediction process and display the real-
time results, and also provides an interface for users to perform customized event detection and corresponding experimental control.
An interface, receiving the latest 2D and 3D poses of marmosets, is provided in the real-time module, allowing users to perform
customized event detection and corresponding experimental control. In the scenario of head orientation detection, we first got
the head orientation of the marmoset by computing the vector from the middle of ‘left ear’ and ‘right ear’ to ‘head’ in the real space,
then we defined the head orientation as ’left’ if the angle between the head orientation vector and the normal vector of left side of the
cage (i.e., x-z plane in the default coordinate system) is less than 45°, and ‘forward’ if the angle is between 45 and 135°, and ‘right’ if
the angle is larger than 135°.

Cameras produced live video streams at 25fps with 1920 x 1080 % 3 frame size, and frames are read by Real-Time Stream Protocol
(RTSP). Latencies were evaluated on a computer with Intel Core i7- 13700K CPU, NVIDIA GeForce GTX 4090 GPU and 64GB Ram.

Model deployment

The detection and pose estimation models were deployed with TensorRT using tools provided by MMDeploy to further enhance infer-
ence speed for the purpose of real-time feedback. To support inputs of varying batch sizes, dynamic input shapes were configured
during deployment. For the detection model, input shapes ranged from (1, 3, 640, 640) to (16, 3, 640, 640). For the detection model,
input shapes ranged from (1, 3,512, 512) to (64, 3, 512, 512) for the pose estimation model. In addition, FP16 precision was enabled to
ensure real-time processing capabilities.

Cell Reports Methods 5, 100986, February 24, 2025 e3




Please cite this article in press as: Cheng et al., A real-time, multi-subject three-dimensional pose tracking system for the behavioral analysis of non-
human primates, Cell Reports Methods (2025), https://doi.org/10.1016/j.crmeth.2025.100986

¢? CelPress Cell Reports Methods

OPEN ACCESS

Behavioral mapping and clustering

To create the behavioral map, a 60-min video clip containing 180000 poses of two marmosets was analyzed. For each 3D pose,
103-dimensional features were selected, including non-locomotor movement (3x16 = 48 dimensions), derived by subtracting the
‘spinemid’ coordinates from each of the 3D pose and rotating the entire pose to ensure its head faces a specific direction, the loco-
motion velocity (3x16 = 48 dimensions), the direction from neck to head (3 dimensions), the direction from midpoint of left and right
ears to head (3 dimensions), and the height of the ‘spinemid’ body location (1 dimension). Then principal component analysis (PCA)
was performed to reduce the features to 16 dimensions which account for 97.1% of the data variance. Subsequently, t-Distributed
Stochastic Neighbor Embedding (t-SNE) was employed to generate the 2-dimensional embedding of all samples. In the t-SNE space,
closer point representing more similar samples after linear and non-linear transformations of the original features. We then estimate
the density map and perform watershed transformation for unsupervised clustering, with the resulting clusters shown as blocks with
gray boundaries. Each cluster now represents a type of representative behavior. We examine the 3D poses corresponding to the
density peak of each cluster, and manually merge similar behaviors to group them into 8 typical postures of the marmoset, including
standing, jumping, walking, running, hanging, climbing, sitting and proning.

QUANTIFICATION AND STATISTICAL ANALYSIS

Experiments were randomized, and no data were excluded from the analysis. Sample sizes (n) for each experiment are specified in
the figure legends. Values are reported as mean + SD unless otherwise stated. Plot and analyses were performed using Python 3.8.
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